Data Structure Design Guidelines

R. C. Tausworthe
DSN Data Systems Development Section

Proper modularization of software designs is more than mere segmentation of
a program into subfunctions as dictated by control-logic topologies, as might be
suggested by classical structured programming, wherein a limited number of
program control-logic structures are permitted. Analyzing data connectivity
between program segments can be far more complex than analyzing control flow,
unless conscientious precautions are taken to avert this possibility. For this reason,
data connectivity design should adhere to a discipline which minimizes both data
and control-flow connections. This article discusses such considerations within a
top-down, hierarchic, structured-programming approach to software design.

l. Introduction

As I shall be dealing with it, design is meant to be that
activity which defines program data structures and logical
algorithms in response to, and conforming with, a soft-
ware functional specification. It consists of program
organization, data manipulations, input/output (I/0)
procedures, and the like, carried to a level of detail suffi-
cient to serve as the working basis for coding and oper-
ational implementation. The basic elements required to
effect a good program design are an understanding of
the function to be served and the mechanisms available
to carry out the job.

The data structure design guidelines I shall describe

are prompted by what I call “top-down, modular, hier-
archic, structured development of software.” In doing a

68

top-down, modular, hierarchic, structured design, one
starts with an end-to-end overall definition of the program
and analyzes it into a number of component parts accord-
ing to a set of decomposition rules. In terms of flowcharts,
one starts with a single box that represents the entire
program at the top hierarchic level, and expands that box
into a flowchart at the next level, which displays the
component subfunctions as a structured algorithm, in
keeping with certain flowchart-topology rules.

Each of the subfunctions is given a precise end-to-end
subspecification, some of which will be expanded into
separate flowcharts at the next design level, and so on,
until the final collection of subspecifications can be coded
directly, without functional ambiguity. The American
National Standards Institute (ANSI) standard (Ref. 1)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23



technique for depicting those submodules which are to be
expanded by subsequent flowcharts is by “striping” that
flowchart symbol on the parent flowchart. T will, there-
fore, refer to such submodules as striped submodules
They are also referred to by others (Ref. 2) as stubs.

Such hierarchic decomposition identifies the program-
ming process as a step-by-step decomposition of mathe-
matical functions into structures of logical connectives
and subfunctions which ultimately can be realized
directly in the programming language to be used. Such
a decomposition tends to channel detail into functional
levels which aid human comprchension, and thereby,
provides a way to control complexity in a disciplined,
systematic way.

Certain flowchart topologics, or logical connectivities
of the subfunctions, limited to iterations and nestings of a
canonic-structured set (Ref. 2) have been shown (Ref. 3)
to produce programs that are readable, understandable,
codable, testable, maintainable, modifiable, and manage-
able. Control branching is entirely standardized so that
the flowchart, accompanying narrative, and resultant code
can be read from top to bottom without having to trace
the branching logic in any intricate, convoluted way.

But proper modularization of software is more than just
segmentation of a program into subfunctions as dictated
by control-logic topologics. One may conceivably erase
all the control flow lines from a flowchart and replace
them by lines representing the data accesses instead, as
a graphic way to identify operations on the data and to
display data interconnectivity between executing mod-
ules. Such a chart would undoubtedly be convincing
evidence that analyzing data connectivity can be far more
complex than analyzing program control flow, unless
conscious precautions are taken to avert this possibility.

For this reason, data connectivity design should, from
the very first, be made to adhere to a discipline which
minimizes module connections and organizes it into
understandable units. Such a discipline, when coupled
with structured control-logic design methods, offers the
possibility of maintaining program clarity and correctness
in both data flow and control flow.

Il. Information, Data, and Storage Structures

A program operates on data, An information structure
is a representation of the elements of a problem or of an
applicable solution procedure for the problem; a data

JPL. DEEP SPACE NETWORK PROGRESS REPORT 42-23

structure is a representation of the ordering and accessi-
bility relationships among data items without regard to
storage or implementation considerations; and a storage
structure is a representation of the logical accessibility
between data items as stored in a computer (Ref. 4). For
example, in the vector-algebra problem Ax=b, the
vectors x and b and the matrix A are information struc-
tures; when we agree to represent this problem in the
form of dimensioned arrays A(N,N), X(N), B(N), then A,
B, and X become data structures; when we represent
these in computer memory, as for example, by the
mapping

location (A[1,]]) = location (A[1L,1)+N*(I-1)+]—1

then this becomes the storage structure.

A data structure is generally specified as a set of data
items (variables or constants), each typed (a) by a range
of values (such as logical, integer, real, complex, double-
precision, character, string, or an enumerated set of
values) and (b) by a connectivity of items within the
structure (such as are implicit in a linear list, stack, queue,
deque, orthogonal array, tree, ring, or graph). Perhaps
the simplest example of a data structure is a single
integer-valued variable.

The data structures which one is apt to use most often
depend on the facility with which the programming lan-
guage to be used accommodates that structure. For
example, FORTRAN accommodates integer, real, and
complex data types in simple or array data structures. It
is certainly possible in FORTRAN to create and manipu-
late a queue of string records as a data structure; but it
is not as easy as it is in, for example, PL/1, where string
variables and linked-list data structures are within the
language repertoire.

A data structure also possesses another attribute having
to do with when and where it is accessed in the program.
This is its scope of activity (or merely, its scope). The
scope of a structure extends from the earliest point in a
program where information appears in that structure,
until the latest point that structure is needed, either by
the current module, or by another interfacing subsequent
module. The structure is active whenever the program is
cxecuting within the scope of that structure. The scope
need not be continuous. For example, an index variable
for an iteration only is active during the iteration, and
may be reused by other parts of a program once the
itcration has been completed.

69



IIl. Data Structure Hierarchies

Dijkstra (Ref. 5) formulated the solution of a program-
ming problem in terms of a set of “levels of abstraction,”
or concepts capable of being implemented (and inter-
preted) in many ways, but which were perhaps not fully
understood at any particular stage of development. Later
stages then provided refinement to cach concept until the
program was entircly complete. The use of abstractions
provided a mechanism for hierarchic refinement by which
it was possible to express those details that were known
and relevant at a particular time, and to defer for later
refinement, those details which were not.

Hoare (Ref. 6) characterizes an abstract resource, such
as a data structure, by three sets of such hicrarchics:
(1) the representation of the abstract resource, or a set
of symbols which onc may substitute for the physical
aspects of the actual resource; (2) a set of manipulations
which provide the transformation rules for representa-
tions as a means of predicting the effect of similar
manipulations on the physical resources; and (3) a set of
axioms which state the relationship and extent to which
the physical properties of a resource are shared by their
eomputer representation. The extent to which an abstrac-
tion leads to a successful program depends on the extent
to which (a) the axioms describe the problem, (b) the
axioms model the program behavior, and (c) the choice
of a representation, with its manipulations, yiclds accept-
able performance merits.

The way abstractions are formulated also greatly
influences the extent and likelihood that a program will
need major revision during the development process. This
is the case because the nature of the data and the process-
ing they require tend to influence the data structure
design significantly. Premature representation of a data
structure during design, when the needs of the structure
are relatively unknown, leads to errors in judgement that
may go undetected until too late for effective removal.
The usc of abstractions during design can postpone some
of the decisions on data representation until a more
appropriate time in the development.,

IV. Levels of Access

Data structures to be used in a program are particularly
well suited (Ref. 6) to being designed into levels of
abstraction imposed by the hierarchic decomposition of
program specifications. In the top-down method, the top-
layer considerations are concerned with the problem, and
deeper layers traverse the span to programming language.

70

The specification hierarchy for a data structure will thus
begin with one fitting the needs of the problem and wind
up with detail at the programming language level.

For example, suppose, in the upper layers of the design,
that a module function may recognize the need for a
“stack” to hold certain data. No more information is
supplied at that level, not even the name, because no
other interfaces appear. However, at some eventual hier-
archic detailing of the module, the name will become
important, as well as perhaps those functions which fetch
and store data in the stack. Upon hierarchic expansion
of these functions, more detail is needed about the stack,
such as its size and the pointer to its top element. Even-
tually, the entire detail of the stack, down to the bit-by-
bit machine configuration, will be specified in one form
or another.

The hierarchy of definition thus describes the data
structure in levels of access. At the top, the only access
is through a vague notion of the data to be held; at deeper
levels, the structure is accessed by name, then by increas-
ingly more detailed operations, until, at the final level,
the individual components are accessible. A level of
access for a set of resources is defined as an interface
through which all accesses to any constituent part of a
resource must pass, except for those at deeper levels
within the hicrarchy.

Extending the example above, let us suppose that data
at some level can be accessed in a stack by way of opera-
tions PUSH and PULL. Then let all accesses to the stack
in the rest of the program, except for accesses within the
access functions themselves, be made only via this level
of access. Accesses to stack components within the PUSH-
PULL functions have a deeper, more detailed level of
access to the data structure. Then the access functions
own the structure at each level of access.

The concept may be extended; suppose functions
PUSH(stack) and PULL(stack) represent a level of access
for a set of stack structures whose names can be substi-
tuted for the syntactic variable stack above. Again, the
access functions own the set of stacks exclusively at that
level of access in the sense that modules outside PUSH
and PULL wishing to access a stack must do so only
through these functions.

The general idea here is that a data structure (and,
indeed, any resource) may be characterized by its levels
of access as well as by the function it serves. Levels of
access, then, can provide a conceptual framework for

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23



achieving a clear and logical design. At the lowest level
are the access functions for individual resource units, such
as arithmetic registers, memory cells, file elements, etc.
File elements are built into records by defining functions
to process groups of file clements as a unit; records are
built into files by defining functions to process groups of
records as a unit; and so on, up the hierarchy. Fach level
supports an important abstraction of the hierarchic
buildup of the resource.

Each access level consists of one or more externally
accessible functions which share commonly owned re-
sources. The connections in control and data among the
various access modules induced by the top-down hier-
archy arc then limited in a natural way. Every resource
used by a program will cventually be represented in a
hierarchy whose levels map the needs of the problem
into characteristics of the resource.

V. Data Design

As was indicated earlier, data-flow analysis is a natural
tool for specifying what a program function is in terms of
transformations of input data to the output wanted. In
adesign, which specifies how the computer is to implement
these, it is useful to identify module interfaces to show
the precedence of data creation and use among modules,
and to promote understanding of the program interac-
tions. For example, if data created in modules A and B
are going to be further processed by module C, then the
execution of A and B must precede C; if A and B do not
share data, either may be executed first.

Data-flow diagrams depict the activity of a program
module as reading certain input data structures and
writing other output data structures according to prede-
fined rules. Such diagrams can be every bit as uscful as
flowcharts, because they provide a means of attacking a
problem in which questions of control, which at the early
stages of design only tend to obscure the solution anyway,
are secondary. They further provide a means to identify,
and then to minimize, data-connections and side-effects
among modules. They fit in with the top-down, hierarchic,
modular, structured design discipline. They are eminently
suitable as documentation to communicate the overall
program organization. They identify the elements most
important to the program mainstream, so that priorities
and alternate operational modes can be established. In
summary, data connectivity diagrams (data-flow charts),
with their accompanying cxplanatory narrative, form
another effective tool for the designer’s bag.

JPL. DEEP SPACE NETWORK PROGRESS REPORT 42-23

Probably the most effective use of data-connection
analysis will occur at the highest levels of the design.
Then, as design progresses, data interconnectivity be-
comes more firmly established in the mind of the designer
(and any reviewers), so graphic aids diminish in value.
This is just the opposite of flowcharting, where the con-
trol at the top levels tends to be rather non-contributory
to understanding, but becomes exceedingly more impor-
tant at the deeper levels.

The data-connection guideline is the following: Design
the control logic of a module so as to be independent of
the way the data are structured whenever practicable,
and modularize accesses to data structures so that if data
are restructured at a later time (e.g., for more efliciency),
only the access functions need be altered; organize sub-
modules to minimize data interfaces whenever possible.

VI. Data Structure Design

Data structuring is primarily concerned with sclection
of type. Each programming language has certain elemen-
tary (mlstructurod) types, such as integers and reals,
which form the basis of more extended, or structured,
types. Then cach new data structure typed is defined in
terms of previously defined types, and there is a cor-
responding sct of operations valid on that type.

The fundamental aspects of data structure design are:
(1) deciding when to save data rather than regenerate
them from the input, and (2) deciding how to store them
when they are to be saved. Such decisions not only
depend on the input data (type) but on the amount
(e.g., to storc in files versus core), their characteristics
(e.g., sparse versus dense within the information structure),
and the uses to which such data are to be put (e.g., pre-
dominance of comparisons versus updates). One important
decision is the degree of packing to save space versus the
lack of packing to save execution time. Other decisions
have to be made concerning whether the data accesscs
are to be direct (i.e., accessed directly within the struc-
ture) or indirect (i.e., accessed indirectly through a sur-
rogate structure of pointers).

The principal key to making such decisions is experi-
ence. No gencralized guidelines can relate what data
structure best fits the needs of specific problem. However,
hierarchic abstraction does provide a generalized pro-
cedure for linking experience and expertise to the needs
of the problem.

71



Vil. Documentation of Data Structure Design

Another key toward effecting a good data-structure
design, as well as promoting correctness in programming,
is worthwhile documentation of the data structure. Such
documentation can be organized in the same hierarchic
levels of detail as emerged naturally in the design process.
In fact, if the designer sets down the data design in this
form from the beginning and maintains it throughout
during the design process, then the documentation forms
the vehicle for design.

Such documentation keeps track of the current state
of the program requirements and all assumptions con-
cerning its data structures, their levels of access, etc., up
to the current phase. Morcover, programmers should be
encouraged to make this hierarchic, top-down, concurrent
documentation record not only the formal, definitive
aspects of a structure, such as how the structure is formed
and what its levels of access are, but also the more in-
formal descriptive aspects of the problem, such as the
rationale why the structure is defined the way it is.

The rationale of a program and its data structures is
for the benefit of humans, not the computer. If this
rationale is based on the hierarchic structuring of detail
into increasingly refined levels of access, then humans
can comprehend program complexity at each level by
regarding the next lower level as a functional subunit.

Documentation also forms the basis for the assessment
of program correctness, whether it be by formal proof,
informal desk-checking, or testing the running program.
In the next Section, I give guidelines relating to the level
and content of documentation for data structures.

VIll. Data Structure Documentation
Guidelines

The overall guideline which has governed the re-
mainder of this section is the following: Documentation
of each program submodule should exist to a sufficient
degree that correctness can be assessed rigorously on the
basis of its control logic and auditably for functional
completeness.

To this end, I shall assume that the control logic for
a given submodule has been specified completely (as
structured programming does), so that module control is
explicit, and therefore fulfills the guideline. For all de-
cisions to be explicit and determinable within an indi-
vidual submodule with no other aid than references to

72

preceding levels of the design, the unstriped (non-stub)
subfunctions must give explicit settings to all control flag
assignments. A striped (stub) subfunction at the current
level which is specified to alter a control flag at a later
level, but used at the current or prior level, must be
accompanied by documentation which details explicit
flag settings and the rationale for the setting.

Data structures accessed by unstriped submodules
must be declared as to specific type attributes necessary
for the intended programming language to access that
structure without any ambiguity. Internal data structures
accessed by striped modules, not pertinent to control
logic or functional correctness, as specified above, may be
detailed in later levels in the design. Further expansions
of striped boxes successively provide more and more
detail about the data structures and requirements in-
volved. Specifically, each further detailing of a data
structure definition must be made consistent with every
previous assumption concerning its use as a minimum,
The final, explicit form of a data structure definition
should contain: (i) the structure name; (ii) its mnemonic
derivation; (iii) type attributes (e.g., real, string/array
variable, simple variable, etc.); (iv) range of values; (v)
scope of activity (i.e., over what portions of the program
the structure is not available for reassignment or reuse
by other parts of the program); (vi) description of the use
of the data structure in the program; and (vii) a list of any
data structures which share storage with this structure.

Declaration, or declaration and initialization of a new
data structure may appear as an entry vequirement of
the current submodule, to be performed in specified,
previously defined modules. Such actions are documented
by annotations to the flowchart and code for the current
module; the actual declaration/initialization code is lo-
cated within the specified modules (striped or unstriped),
indented (if permitted by the programming language) to
show that it is a later addition to that module (not con-
tributing to nor detracting from the previous assessment
of correctness) and annotated to indicate the later module
which requires this initialization.

Data Structures may be referenced by striped modules
in generic terms when not related to control-logic cor-
rectness. Assumptions made in such references must be
consistent with the current state of the data structure
definition. For example, a striped module may state that
a set of characters is “put in the name table,” whereas the
unstriped submodule which implements that function must
be specific, as “NPTR=NPTR-+1, NAME(NPTR)=N$",

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23



in which NPTR, NAME, and N$ appear as appropriate
detailed declarations in a Data Structure Definition Table.

A data structure referred to in generic terms, or any
other way other than by its specific name, should have
an entry in the software design document glossary, which
then gives the actual structure name.

The current state of every data structure definition
should be maintained in a Data Structure Definition
Table in the software design document. This table either
contains the definition or gives an explicit reference to
defining material elsewhere in the design document. This
table can be listed in alphabetic order for ease in locating
structures referred to.

For readability, it is useful to provide the mnemonic
derivation of all data-structure names used in a submodule

unless such names have previously occurred in a direct
ancestrial module. Names appearing in “cousin” sub-
modules, unreferenced in their common ancestor should
repeat the mnemonic derivation for ease in reading.

IX. Summary

The guidelines for data structure design are very highly
influenced by the control-logic design and other design
aspects of a program. I have indicated in this paper how
the top-down, hierarchic, modular, structured-program
approach is particularly well suited to effective data
structure design because it permits the postponement of
data-structure decisions until the requirements for a par-
ticular data representation are more concrete, when more
is known about the program behavior and the character-
istics of the data. Errors in judgement tend thus to be
averted and easier to correct when detected.

References

. American National Standard Flowchart Symbols and Their Usage in Informa-
tion Processing, ANSI X3.5-1970, American National Standards Institute, Inc.,
Sept. 1, 1970.

. Mills, H. D., Mathematical Foundations of Structured Programming, IBM
Document FSC72-6012, Federal Systems Division, IBM Corp., Gaithersburg,
Md., February 1972.

3. Baker, F. T., and Mills, H. D., “Chief Programmer Teams,” Datamation, Vol. 19,

No. 12, pp. 38-61, December 1973.

4. Robert, D. C., “File Organization Techniques,” Advances in Computers, Vol. 12,

Academic Press, Inc., New York, 1972.

. Dijkstra, E. W., “Notes on Structured Programming,” in Structured Program-
ming, pp. 1-82, Academic Press, Inc., New York, 1972.

. Hoare, C. A. R., “Notes on Data Structuring,” in Structured Programming,
pp- 83-174, Academic Press, Inc., New York, 1972.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

73



